

### Ghost Controls Lock Mechanism VDR2

-

Senior Design Team 510

November 14, 2024

## **Sponsor and Advisor**





Engineering Mentor Darryl Beadle Head Engineer Ghost Controls



<u>Academic Advisor</u> Shayne McConomy, Ph.D. Senior Design Professor



<u>Project Advisor</u> Simone Hruda, Ph.D. *Professor* 



#### **Team Introductions**



Kayla Boudreaux Systems Engineer





Ernest Patton III Quality Engineer



Dior Reece Test Engineer Presenter



**Olivia Walton** Design Engineer



Bradley Wiles Materials Engineer Presenter



Jacob Brock Hardware/Software Engineer Presenter

# Objective

The objective of this project is to design an innovative gate latch mechanism that effectively addresses current issues with misalignment and improper latching. Our goal is to develop a solution that ensures reliable engagement, enhanced durability, and ease of installation.



### Background

#### **Ghost Controls**

- Tallahassee Based Company
- Automatic Gate Openers











#### **Current Design – Zombie Lock**



- Weather Resistant
- Easy to Install
- Resists Force





#### **Customer Issues**



Current Misalignment Tolerance

- Only accounts for 3/4 inches of misalignment
- Main cause of customer complaints
- Customer must manually adjust receiver to correct



#### **Customer Issues**



Increases misalignment tolerance to 3 inches
Boosts product reviews
Significantly extends the time before requiring manual adjustment



#### **Targets and Metrics**





#### Resistance





**Dior Reece** 

Team 510 - VDR2

# Lock Mechanism



**Dior Reece** 

FAMU-FSU College of Engineering

Team 510 – VDR2



Team 510 – VDR2

FAMU-FSU College of Engineering

### Compatibility



**Additional Targets Industry Compatible** Security Stay lightweight Cost



Jacob Brock

#### **Concept Generation Tactics**

SCAMPER 39 Concepts

> Crap Shoot 11 Concepts

#### Morphological Chart 50 Concepts



Jacob Brock

### **High Fidelity Concepts**





Concept 67: Receiver Ramp Modification



Concept 71: Magnet System



## High Fidelity: Pivoting ZombieLock



- Lock will not require modification
- Features an adapter plate and a backing plate
- A pivot point allows for more misalignment

**Backing Plate** 





#### **High Fidelity: Receiver Ramp Modification**



- Modification of the current receiver
- Ramps added to guide lock into position
- Rollers or coating to reduce friction
- Simple, cheap, and light





#### Jacob Brock

#### High Fidelity: Magnet Modification





- Magnet affords large amounts of misalignment
- Steel plate mounted to post
- DC stepper motor rotates magnet handle to magnetize





**Concept Selection** 





**Jacob Brock** 

## **Binary Pairwise Comparison**

| Customer Needs                                                     | Score |
|--------------------------------------------------------------------|-------|
| Product is intended for no contact gates                           | 1     |
| Improvement to lock costs less than the current market competitors | 1     |
| Gate lock design can resist 50 lbs. of force                       | 2     |
| Mechanism works for lengths up to 20 feet                          | 3     |
| The gate performs in rugged environments                           | 4     |
| Product contains a fail-safe method of unlocking                   | 5     |
| Gate adjusts system to account for the sag                         | 6     |
| Gate can stay locked in the closed position after opener is used   | 7     |
| Product must be mechanical in nature, but uses power to unlock     | 7     |



Jacob Brock

### **House of Quality**

| Engineering Characteristic    | Ranking |
|-------------------------------|---------|
| Engage Lock                   | 1       |
| Release Passively             | 2       |
| Keep Gate Closed              | 3       |
| Cost                          | 4       |
| Volume                        | 5       |
| Account for Vertical Bounce   | 6       |
| Account for Horizontal Bounce | 7       |
| Draw Power to Release Latch   | 8       |
| Account for Thermal Expansion | 9       |
| Mount to Gate                 | 10      |



Team 510 – VDR2

### **Pugh Chart- First Iteration**

#### Datum:



#### **Selection Criteria:**

- Engage Lock
- ✓ Release Passively
- Keep Gate Closed
- Accounts for Misalignments
- 🚺 Volume
- \$ Cost



**Bradley Wiles** 

#### **Pugh Chart- First Iteration**







**Bradley Wiles** 

#### **Pugh Chart- First Iteration**







### **Pugh Chart- Second Iteration**

#### **New Datum:**







**Bradley Wiles** 

### **Pugh Chart- Second Iteration**

#### **Datum: Pool Lock**

| Engage Lock                | S |
|----------------------------|---|
| Release Passively          | + |
| Draw Power to Release      | + |
| Keep Gate Closed           | S |
| Accounts for Misalignments | S |
| Volume                     | + |
| Cost                       | + |



**Ramp Concept** 



### **Pugh Chart- Second Iteration**

#### **Datum: Pool Lock**

| Engage Lock                | - |
|----------------------------|---|
| Release Passively          | S |
| Draw Power to Release      | - |
| Keep Gate Closed           | - |
| Accounts for Misalignments | + |
| Volume                     | + |
| Cost                       | + |



#### **Rotating Lock Concept**



**Bradley Wiles** 

### **Pugh Chart- Second Iteration**

#### **Datum: Pool Lock**

| Engage Lock                | S |
|----------------------------|---|
| Release Passively          | - |
| Draw Power to Release      | - |
| Keep Gate Closed           | S |
| Accounts for Misalignments | S |
| Volume                     | + |
| Cost                       | + |



#### **French Doors Concept**



**Bradley Wiles** 

FAMU-FSU College of Engineering

#### **Analytical Hierarchy Process**



Team 510 – VDR2



Team 510 – VDR2

FAMU-FSU College of Engineering

Bradley Wiles



# **Questions?**



Bradley Wiles